```
0368.4162 Foundations of Cryptography Fall 2017
    Final Exam, Moed A
February 4 2018
```

Duration: 3 hours.
Structure: 3 questions, 2 items each.
Grading: Each item is worth 17 points. Grades above 100 will be rounded to 100 .
Instructions:

- You can use any written materials.
- You can use statements shown in the lectures or home assignments as long as you state them clearly.
- If you don't know the answer, you can write "I don't know" and you will get $5 / 17$ points.
- Write in any language you wish, but write clearly.
- Recommendation: each answer (including both items) shouldn't take much more than a page.
- You don't need to copy the question into your notebook.
- The questions aren't ordered according to difficulty. If you get stuck, move on to the next question.

Good Luck!

1. Let (E, D) be a 1-KPA-secure secret-key encryption for messages of length $n+1$ (for key length n).
(a) Assume that the encryption algorithm E is deterministic. Prove that the following function f is one-way or give a counter example:

$$
\forall s k \in\{0,1\}^{n}: f(s k)=E_{s k}\left(0^{n+1}\right) .
$$

(b) Assume that the encryption algorithm E also uses randomness r of length n. Prove that the following function f is one-way or give a counter example:

$$
\forall s k, r \in\{0,1\}^{n}: f(s k, r)=E_{s k}\left(0^{n+1} ; r\right) .
$$

2. Let (G, E, D) be a CPA-secure public-key encryption scheme that is (perfectly) correct. For each of the following suggestions, prove that it is a (perfectly) binding and computationally hiding commitment scheme, or give a counter example.
(a)

$$
\operatorname{Com}\left(m ;\left(r_{g}, r_{e}\right)\right)=\left(p k, E_{p k}\left(m ; r_{e}\right)\right),
$$

where m is the committed message, $\left(r_{g}, r_{e}\right)$ are the randomness used by the commitment, each sampled at random and independently from $\{0,1\}^{n}, p k$ is generated by $G\left(1^{n} ; r_{g}\right)$, with random coins r_{g}, and r_{e} is the randomness used by the encryption algorithm.
(b)

$$
\operatorname{Com}\left(m ;\left(r_{g}, r_{e}\right)\right)=E_{p k}\left(m ; r_{e}\right)
$$

where all parameters are generated as in the previous item.
3. A triangle in a graph consists of three vertices that are all connected to each other by edges. Consider a variant of the GMW zero-knowledge proof system for 3COL where (after the prover commits to a coloring) instead of requesting that the prover opens a random edge, the verifier first flips a random coin $b \leftarrow\{0,1\}$: if $b=0$, or there are no triangles in the graph, the verifier asks that the prover opens a random edge as in the original protocol, whereas if $b=1$, and there are triangles, the verifier asks that the prover opens a random triangle. As in the original protocol, the verifier accepts if for every edge that the prover opened, the colors revealed are distinct.
(a) Is the protocol still zero-knowledge. If your answer is no, give a counter example. If your answer is yes, describe a simulator (no need to prove validity).
(b) Consider $t=20|E|$ sequential repetitions of the above protocol. Show that there exists an efficient extractor algorithm E such that given every graph $G=(U, E)$ and the code of a deterministic prover P^{*} that with probability $1 / 100$ convinces the verifier V of accepting G, the extractor outputs a valid 3 -coloring of G with probability 0.99 . The extractor's running time should be polynomial in $|G|$ and the worst-case running time t of the prover P^{*}.

