0368.4162 Foundations of Cryptography Fall 2017 Nir Bitansky

Final Exam, Moed A, Solution

February 4 2018

1. Let (E, D) be a 1-KPA-secure secret-key encryption for messages of length n 4+ 1 (for key length n).

(a)

Assume that the encryption algorithm F is deterministic. Prove that the following function family
f ={fn}nen is one-way or give a counter example:

Vsk € {0,1}" : fo(sk) = Eg(0™1) .

Solution: We’ll show that if there is an efficient(w.l.0.g deterministic) adversary A that inverts
f with probability €, then A can be used to distinguish Ey;,(0"™1) from Eg. (U, 1) with advantage
£/2. Indeed, the number of ciphertexts ct that A manages to invert is at most £2™. On the other
hand, Es(+) is injective, implying that Egx(U,+1) is uniformly distributed over a set of ciphertexts
of size 2”1 and is thus inverted with probability at most £/2. This gives rise to the required
distinguisher — given ¢t it tries to invert using A, and outputs 1 if and only if A succeeds.
Assume that the encryption algorithm E also uses randomness 7 of some polynomial length ¢(n).
Prove that the following function family f = {f,},y is one-way or give a counter example:

V(sk,r) € {0,13" x {0, 1} : f,(sk,r) = Eg (0" r) .

Solution: We'll give a counter example. Let G : {0,1}" — {0,1}"*! be a PRG (recall that an
encryption scheme for messages of length > n implies OWFs and thus also PRGs). Define

Vsk € {0,1}",r,m € {0,1}" .
Egp(m;r) = {(G(Sk) @ m,0mH) if sk £ 1"

(r,m) if sk =1"

Dgi(c1,c0) = {G(Sk) va ?f sk#1

Co if sk=1"
Correctness follows readily. By the pseudorandomness of G, and the fact that sk = 1™ w.p. at
most 27", it holds that Eg(m;7) ~¢ (Uyy1,0" 1), and thus the scheme is 1-KPA secure. However,
we can invert the corresponding OWF, with probability 1. Given an image f,(sk,r) = (¢1,0™),
we return the preimage (17, ¢1).

2. Let (G, E, D) be a CPA-secure public-key encryption scheme that is (perfectly) correct. For each of the
following suggestions, prove that it is a (perfectly) binding and computationally hiding commitment
scheme, or give a counter example.

(a)

COm(m; (rg» TE)) = (pkv Epk(m; TE)))

where m is the committed message, (r4,7.) are the randomness used by the commitment, each
sampled at random and independently from {0,1}", pk is generated by G(1";r,), with random
coins 74, and 7. is the randomness used by the encryption algorithm.

Final Exam, Moed A, Solution-1

Solution: We’ll prove that the scheme is a commitment. The hiding of the commitment follows
directly from CPA security — for any two messages m, m’':

Com(m) = pk, Epi(m) =~ pk, Epp(m') ~=. Com(m') .

To see that binding holds, note that if Com(m, (ry,r.)) = Com(m/, (r},r;)), then for (sk,pk) =
G(1™;ry) and (pk'sk’) = G(1™;r), it holds that pk = pk’ and

m = Dy (Epr(m;re)) = Dsp(Epr(m';r,)) =m' .

Com(m; (rg,7e)) = Epp(msre)

where all parameters are generated as in the previous item.

Solution: We’ll construct a counter example. Specifically, given any public-key encryption
scheme (G, E', D), we’ll construct a new bit-encryption scheme (G, E, D) such that the above is
not binding. Let us say that a secret/public key k is consistent with randomness r, € {0,1}", if
G(1™; 1) outputs k as the secret/public key (note that we can efficiently check if a given key k is
consistent with given randomness r4). Assume w.l.o.g that in (G’, E’, D’), no key k is consistent
with both 0™ and 1™.

In our new scheme:

e (G is the same as G'.

o Epi(m): if pk is consistent with randomness 0", resample (sk', pk') = G(1";7;) for random-
ness, ry = 1". Output ct = £, (m & 1).

o Dy (ct): if sk is consistent with randomness 0", resample (sk’, pk) = G(1";ry) for random-
ness, v, = 1". Output 1® D, (ct).

The new scheme is CPA secure, as we've only changed it on negligible fraction of keys. It is
also still perfectly correct — we changed it only on keys consistent for with 0™, where we shifted
to using keys consistent with 1", and consistently flipped/unflipped the encrypted bit during
encryption/decryption.

Now, however, we have that for any 7,
Com(0; (0™, r.)) = Com(1; (1", 7)) .

3. A triangle in a graph consists of three vertices that are all connected to each other by edges. Consider
a variant of the GMW zero-knowledge proof system for 3COL where (after the prover commits to a
coloring) instead of requesting that the prover opens a random edge, the verifier first flips a random
coin b « {0,1}: if b = 0, or there are no triangles in the graph, the verifier asks that the prover opens
a random edge as in the original protocol, whereas if b = 1, and there are triangles, the verifier asks
that the prover opens a random triangle. As in the original protocol, the verifier accepts if for every
edge that the prover opened, the colors revealed are distinct.

(a) Is the protocol still zero-knowledge. If your answer is no, give a counter example. If your answer
is yes, describe a simulator (no need to prove validity).

Solution: The protocol is still zero-knowledge. Assume w.l.o.g the graph does have triangles
(otherwise, the protocol is the same as the original GMW protocol, and simulation is done in the
same way). The simulator first guesses b’ + {0,1}. If ¥’ = 0, the simulator proceeds as in the
original GMW simulation — it guesses ¢’ = (u,v) + E, chooses random distinct colors for u and
v and then gives the verifier a commitment to these colors for u and v as well as to arbitrary colors

Final Exam, Moed A, Solution-2

for the rest of the vertices. If b = 1, the simulator chooses a random triangle ¢’ = (u,v,w) < T
from the set of all triangles T" in GG, and chooses three random distinct colors for u, v, w. Again
it gives the verifier a commitment to theses colors for u,v and w, and to arbitrary colors for the
rest of the vertices. Then, when the verifier presents its choice b and edge e or triangle ¢, if they
are inconsistent with the simulators guess b’ and e’ or ¢/, the simulator goes back to the first step
of guessing. Otherwise, it opens the required commitments.

Consider ¢t = 20| E| sequential repetitions of the above protocol. Show that there exists an efficient
extractor algorithm F such that given every graph G = (U, E) and the code of a deterministic
prover P* that with probability 1/100 convinces the verifier V' of accepting G, the extractor
outputs a valid 3-coloring of G with probability 0.99. The extractor’s running time should be
polynomial in |G| and the worst-case running time ¢ of the prover P*.

Solution: Similarly to what we’ve seen in the homework, with probability at least

1 1*
(1 = 1/200
100 (2|E> > 1/200 ,

in a random interaction with the prover P*, there will exist a session ¢ € [t] where the prover
convinces the verifier with probability greater than (1 — ﬁ)

This means that in this session, for any verifier choice b = 0,e € E, the prover will reveal a valid
coloring. Our extractor will attempt to extract a coloring from such a session. It will sample ¢
sequential sessions, and then attempt to extract from each one of them, by rewinding the prover,
and asking it to reveal for every choice b = 0, e € E. This succeeds with probability at least 1/200,
and can be amplified to 0.99, by independently repeating a sufficiently large constant number of
times.

Final Exam, Moed A, Solution-3

