Duration: 3 hours.
Structure: 3 questions, 2 items each.
Grading: Each item is worth 17 points. Grades above 100 will be rounded to 100 .
Instructions:

- You can use any written materials.
- You can use statements shown in the lectures or home assignments as long as you state them clearly.
- If you don't know the answer, you can write "I don't know" and you will get $5 / 17$ points.
- Write in any language you wish, but write clearly.
- Recommendation: each answer (including both items) shouldn't take much longer than half a page.

1. In the following question, let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a one-way function and let $\langle\cdot, \cdot\rangle$ denote the inner product modulo 2. Prove the following statements or give a counter example:
(a)

$$
\left\{f(x), r_{1}, r_{2},\left\langle x, r_{1}\right\rangle,\left\langle x, r_{2}\right\rangle\right\}_{n \in \mathbb{N}} \approx_{c}\left\{f(x), r_{1}, r_{2}, u_{1}, u_{2}\right\}_{n \in \mathbb{N}}
$$

where x, r_{1}, r_{2} are each sampled uniformly and independently from $\{0,1\}^{n}$, and u_{1}, u_{2} are uniform and independent bits.
(b)

$$
\left\{f(x), r_{1}, \ldots, r_{2 n},\left\langle x, r_{1}\right\rangle, \ldots,\left\langle x, r_{2 n}\right\rangle\right\}_{n \in \mathbb{N}} \approx_{c}\left\{f(x), r_{1}, \ldots, r_{2 n}, u_{1}, \ldots, u_{2 n}\right\}_{n \in \mathbb{N}}
$$

where $x, r_{1}, \ldots, r_{2 n}$ are each sampled uniformly and independently from $\{0,1\}^{n}$, and $u_{1}, \ldots, u_{2 n}$ are uniform and independent bits.
2. Let (E, D) be a CPA-secure secret-key bit-encryption scheme. Assume there exists a PPT algorithm R so that for any $s k \in\{0,1\}^{n}$, any $b \in\{0,1\}$, and any randomness $r \in\{0,1\}^{n}$ for the encryption algorithm E, the distribution $R\left(E_{s k}(b ; r)\right)$ is identical to $E_{s k}\left(b ; U_{n}\right)$, where U_{n} denotes the uniform distribution. (In other words, R is perfectly rerandomizes any ciphertext).
(a) Consider the following candidate $\left(G^{\prime}, E^{\prime}, D^{\prime}\right)$ for a public-key bit-encryption scheme:

- $G^{\prime}\left(1^{n}\right)$ outputs $(s k, p k)$ where $s k \leftarrow\{0,1\}^{n}$ and $p k=\left(c t_{0}, c t_{1}\right)$ where $c t_{b} \leftarrow E_{s k}(b)$.
- $E_{p k}^{\prime}(b)$ outputs $c t^{\prime} \leftarrow R\left(c t_{b}\right)$.
- $D_{s k}^{\prime}\left(c t^{\prime}\right)=D_{s k}\left(c t^{\prime}\right)$.

Prove that $\left(G^{\prime}, E^{\prime}, D^{\prime}\right)$ is a secure public-key bit encryption, or give a counter example.
(b) Construct from (E, D, R) a two-message (1,2)-oblivious-transfer against semi-honest adversaries. No need to prove its security.
3. Let L be an NP language and for every $x \in L$, denote by $W(x)$ its set of valid witnesses. An interactive proof (P, V) is witness-indistinguishable if for any non-uniform PPT malicious V^{*}

$$
\left\{\left(P\left(w_{0}\right), V^{*}\right)(x)\right\}_{x \in L, w_{0}, w_{1} \in W(x)} \approx_{c}\left\{\left(P\left(w_{1}\right), V^{*}\right)(x)\right\}_{x \in L, w_{0}, w_{1} \in W(x)}
$$

where for any $x \in L$ and $w \in W(x),\left(P(w), V^{*}\right)(x)$ denotes an interaction with common input x, and prover additional input w.
Prove or give a counter example for each of the following statements:
(a) If an interactive proof (P, V) is zero knowledge then it is also witness indistinguishable.
(b) If an interactive proof (P, V) is witness indistinguishable, then so is its two-fold repetition $\left(P^{\otimes 2}, V^{\otimes 2}\right)$. In the two-fold repetition of a protocol, the original protocol is executed twice in parallel on the same inputs x, w, but with independent randomness.

